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Introduction 

mmercial f l i gh t  a t  supersonic speeds has served fcr  the  

- l a s t  deczde 8s a stimulus t o  aeronautical research i n  the  United S-cates zr.Z 

A- c--,. 1. 7 Within the  United S ta tes  the intensive development p rograx  i n  
* 

r . p  2 - d u ~ ~  7n-4- of su2ersonic mil i tary a i r c r a f t  provided a broad backgrom.- af 

z?chnical kcwledge uoon which t o  base i n i t i a l  concepts, studies,  ar,d reszarch 

2ro;rms. 

assessed i n  December 1939, i n  a technical summary of supersonic t r m s p o r t  

problem >repared by NASA and presen-ced t o  t he  FAA, (ref. 1). 

efZort within NASA and elsewhere increased s igni f icant ly  with t h e  inauguratior, 

‘ 3 2 s  potent ia l i ty  of comercial  supersonic f l i g h t  w a s  spec i f ica l ly  
1 

Research 

of a nat ional  program i n  1961 and continued t o  expand as The prograx Z a i n x  

. momn-cum. 

I;ASA r e s z a c h  has exompassed most of t h e  basic  a iscipl ines .  IL t he  ;-ea 

of ccriI‘igaation aerodynamics, for example, over 30 basic configuration c ~ x e g t s  

have been explored. 

f rom t h i s  research are i l l u s t r a t e d  i n  f igure 1. 

are  fixed-wing arrangements and the other two incorporate variab le-sweep 

wings. 

Comaercial---ir Transport) configurations i s  presented i n  referencz 2. I n  

o r s e r  ;a p-ovide a focus f o r  further TUSA research, contracts T:CX l e t  t o  

The f o u r  most promising concepts emerging i n  1e;e lS62 

Two of these c c r 2 i x d a t l m s  

A recen-c and more completz discussion of t he  four SCAT (Supezsonic 

/ ’  



2 

t - e  33eing and Lockheed Companies ir, 3’ebruary 1963, t o  study these four 

co?ii,--ation concepts i n  depth from the  viewpoint of t he  aircraft 

manufzcturer and the  a i r l i n e  user. 

Septezber 1963, and were reported t o  the  industry a lmg with other research 

The studies were completed i n  

results i n  a supersonic transport  conference held a t  tl?e Langley 3esec;rch 

C ~ ? - t e l r  on Septw.ber/g-21, 1963. 

The brozd conclilsions of the  SCAT Feas ib i l i t y  Studies and “,:?e ac;smpanin, 

research studies were as follows. Derivatives of a t  l e a s t  two of t ke  ?ow 

conf ip ra t ions  were judged t o  be technically feasible  i n  t h a t  they co;lld EGeCU 

zhe b w i c  rxission requirements within t h e  prescribed operating res t r ic t ions .  

These s tudies  derr;onstr&ed the  desire-aility of a T i t a n i u m  airframe and the  
-*-‘ 

necessity f o r  dvanced engines. Eowever, it TTZS indicated t h a t  the  resul t ing 

a i r n l a e s  would be la rger  and heavier than corresponding subsonic jets,  and 

t h e i r  econonic f e a s i b i l i t y  was questionable. It was obvious tha t  ways would 

have t o  be found t o  obtain fur ther  major increases i n  f l i g h t  efficiency. 

I-i ~ 2 s  c lear  t h a t  major a t tent ion would have t o  be paid t o  the  sonlc boom, 

T L-X  =- 
. 

W ~ S  shown t o  have become a dominant fac tor  i n  a i r c r a f t  design md 

ope r a t  ion. 

Tne purpose of the  present pzper i s  t o  review some of the major reseacl= 

a c t i v i t i e s  of t he  last  two years, conducted by IU’ASA, i t s  contractors, 2nd 

o t h s s  i n  su2port of t h e  supersonic zransport with emphasis i n  the  areas 

of iq3raved f l i g h t  efficiency, s t a b i l i t y  m6 control, s t ructures  and naterials, 

snd operati26 poblems. 

\ 
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Kast td:iy s q e r s o n i c  research ained a t  drag reduction deal t  vizr- wave 

Gre,. 

ex'censfve calculative and experimental research, t o  t h e  present l inear  

theory nezks&s f o r  t r ea t ing  wave drag and compocent interference. 

a n a l p i c  r?.eti-ods generally show good zgreement with experiment for rzesonzkly 

slender confizuratio3s. 

tsihich have zwned i inea r  theory methods in to  a practicable and powerfa1 

deEi-2 tool. 

These ini ' i ial  e f fo r t s  led t o  the  ''area rule" concept, and t k c u g h  

These 

Program hwe been developed f o r  high-speed computers 

I n  the area of supersonic drag due t o  l i f t ,  experiment shovea -,k.,zt tlx 

theC4re-cical Lains were attainable only f o r  conditions where l inear  theory 

was G2:jLicaLle - t h a t  i s ,  where the  configurations were reasonably slender 

arid i o c a l  S ~ C Q ~ S  not extrece and where cruise l i f t  coefficien-is vere r,oderately 

~ G W .  

le& t o  the lcv-drag, slender corfigurations for the  supersonic transport  

srhLck rret the  l inear  theory requirenents. 

dL-;e:G-;?d Tor hmdling a wide variety or" arbitrary planforns, ail2 zxserimen-, 

The Sorementioned progress i n  the  area of wave drag and interference 

L i n e a  theory methoas were 

sLnyT .,d as muc:-- as 85 percent of the  thzeoretical inproverrent i n  d r q - & e - t o -  

- .  - 2-. du? t o  t w i s t  and caa'oer could be o5tained for arrow t E e  planform. 

k ;et 0: conputer programs was developed t o  mechanize tkiise complex 

co:.x-,uz,:ions. The resul t ing 2rogr&xs, x i t h i a  the r e s t r a i c t s  oI" lir,ear 

theory, 2ermit calculations of  cam-Der surfaces of a rb i t ra ry  wing planforms 

with ssecif ied pressure distribGtions, 

GI" s ressure  Ciszributions on wir.g pianforzs with a rb i t ra ry  surface war2ing. 

Inversely, they permit deterrninatioc 
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X g - u ?  2 i l l u s t r a t e s  a t y i i c a l  build-ur, oI' a configurazion drag 2 0 1 ~  

2s ~ c c c r ~ ~ 1 T s k a i  by use c? the  XASA computer programs. Items shown are  wave 

-.. Gd, " ,-- f'1-ictiz-. drag, and drag-due-to-lilt values for :  (1) the  selectzed 

T.T^-- . .Ld2~c-vmg . 

a ~ d  ( 3 )  t he  theo re t l ca l  lower bound for the  chosen wing planform. 

the  lover h w d ,  provides a quick azsrrer as t o  ~ ~ ~ h e t h e r  o r  not the aerodynamic 

perfomence L j e c t i v e s  can be met v i t ' n  t h e  plarxform selected. 

ilrarped wing must f a l l  between the  flat wing and the lower bound, but 1,511 

n o t  be zecessar i ly  tzqgent t o  the lover bound because of p rac t i ca l  design 

emfiguration, (2) a f lat-wing version of t h a t  same configuat io- ,  

Par t  ( 3 ) ,  

Any prcperly 

res t$pnts .  
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Tkese calculat ive rnethods which provide the  drag polars  of f i s r e  2, . 
ilivolve t3e  ae temina t ion  of c&oer-pla??e pressure d is t r ibu t iors  

LLT- czn 3e used 'io develop other aercd7pmic character is t ics ,  such a3 l i f - c -  

-.-hi ch 

c r v e  slope, pi tching moment a t  zero l i f t ,  s t a t i c  longi tudinal  s t a b i l i t y  ani 

wine loads. ThLo information con be grovided not only for the cruise condition 

'aut ;"or a ranze of lift coeff ic ients  axd susersonic Kach nuabers. 

A :,:ar?ed-ving, Supersonic-transport -type configuration developed through 

z;ie use of i;kese new calculat ive methods and! designed t o  cruise  a t  Mach 

nurrber 2.6 i:, shown i n  figure j. The wing leading-edge i s  swept behind t h e  
- 7 -  
L - L - I  

I L x h  sor-e/ ,he engine nacelles have been loczted under the ving and t o  the  

rezr,.;z a 2os i t ion  Yavorable for l i f t  m d  Crag interference.  

confi->,:.-.ation vTas developed from the  i n i t i d  concept by progressive? i.t?rat:c: 

by LZZ~:S of  the  c c q u t e r  prograns. 

t o  ckeck the  v z l i d i t y  of t he  computer r e s u l t s  2nd t o  evaluate t k e  coEllguzztio:i. 

The experiEenta.1 points p lo t ted  on f igure 2 demonstrate the excellent agreement 

tha': c z n  be o'stair,ed 'oettreen experbec t  znd theory. 

'irne f i n a l  

Zxtensive vind tunnel  t e s t s  vere corduct& 

It i s  stressed tk'; the  s a q l e  configuration shown i s  one of a number of 

-'ix&-wlng end variable-wee? arrangexents being studied by NASA t o  correlate  

ex-)e-.:rr?:T,t and theory and define the z.erodTJr,mic s t a t e  of the art. The 

r;iL":2ose of this work i s  t o  dernonstrzte t h e  capabi l i t i es  of new aerodynanic 

t o o l s  =xi techxiques ra ther  than define a spec i f ic  supersonic t ransport  

conffipration. 

zener21 arrz:~ecia-~t,  s t ruc tu ra l  f eas ib i l i t y ,  and ease o? fabr ica t ion  must be 

ccr.iidc:-ed i n  C e t a i l  by qual i f ied aircraTt designers a d  s i r l i n e  operetors 

belori-- .I opzkiun configuration can be selected.  

Xmy other fectors ,  such as take-off and landing charac te r i s t ics ,  
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A i t e q t s  'io i q w m e  YliZht e2f'iciency ca;lr,ot omit consideratic-s 32' 

t r i n m i y  the  cc:li"5p.raJtAon a t  some reasom,ble l eve l  of sta 'oil i ty c m s l s t e n t  

r v.- .i -G;2 x3son ic  rzquirenents and the  t o t a l  c h a g e  i n  s t a b i l i t y  from the lev- 

. L., .- i s  p c s s l j l e  t o  design the  v:arped wing with a pressure d is t r ibu t ion  r,rhich 

,-, ,L,G -,-, 2 <> -Uo t he  supersonic cruise  Mach number. Tn contrast  t o  the  f l a t  wiR2 cast ,  

. .  

~E. : : i . z~~es  tlie ::zcessl+,y f o r  CGnti-Gl deflection a t  t h e  cruise  l i f t  coef f ic iez t  

(ccnfign-s,tion hac a posi t ive pitching mment a t  zero l i f t ) .  Tne cats, shorn 

iLl p i e  l L , a ~ e  4 ( a )  compae the  tr i lmed l i f t -drag  r a t i o  f o r  t h e  coqara'sle "I"lat" 

:-.e I t -  ;=.r,edl' configurations. Tiiese data show t h e  somevhat IiiZher peak eff ic iency 

- .-. - - >  - .  _- L1--z'.~T--r ,L-pza I.-:--:, ccr3pazed t o  xhe f l a t  wing, and t h e  re la t ive in sens i t i v i ty  

"- --c --,.- ~ - - ~  ~ . r - - - n ~ =  \,.i-n.- . _  c. LO s t a t i c  aargin as p rac t i ca l  s t a j i l i t y  levels are reached. 

"his f a c t o r  i s  G: ma2or significance t o  t he  SST i n  view oi" the  wide range of 

loaCiizc.;5 and sre:-irztion of s t a b i l i t y  level  with Mach number. 

3.. uL.c:x -. ~ . ,  ' s-iuiies have shorn t ha t  the locatior, or" the  engine nacel les  can 

v-,. v L  .,Tr: r; ~ ~ Z : : L L - ? ~ ~  lavorzble 21-q aEd l i f t  in terference effects .  As mentioned 

-----. .-.,< --- i: , c u - ~ l ; r  tl:e e z g i x  nacelles of the s m p l e  configuration vere located 

'oezzztk m d  v e l 1  aft on t h e  .wing. Tae c o q r e s s i c n  waves f ro=  t h e  nacelles 

L?2inze upon tlie receding slopes of the wing, thereby producing both favorable 

lift a d  thrus-c interference,  f igure  b(b) .  

seen 

G< - c L  -.aceller Tci- l i f z  coeff ic ients  a t  and above t h e  cruise  l i f t  coefficient.  

A E i t i o n a l  recsarch oa these interference e f f ec t s  i s  presently underwzy. 

I n  t h i s  case these e f f ec t s  are 

':.- s'L'3iciently po:rerful t o  overcme both the  ware and f r i c t i o n  drKs 

The i:ni;il-c~.;:.t~t i n  fliGh?t efficiency (JIB T, ) achievsd i n  the period - 
SFC 

betveen -G,:? SCA2 f e g s i b i l i t y  studies a d  t h e  present data  i s  shown i n  : i s r e  3 .  
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r-. .. -L--2~le /. r;r.i, c x i i g u r a t i o n s  just discuszed f a l l s  a t  the  top of t he  “AZvanced 

AA?ro2 7-,? ..~lmics’~ ,- Szrld, an& exhibi ts  the highest level of efI’iciency y& neasured 

- Y  1.. t:>i _I s Mach number range. Woke, tm, t h a t  t h i s  eff ic iency l eve l  &:proaches 

-L-. -, L : L Z  G< t h e  2Z 

t o  continuous m d  p a r a l l e l  experimental and calculat ive research g r o g r m s  

a h e d  a t  irzSroving * su3ersonic performame. 

h y  cocclusiozs 2s the overa l l  vehicle eZ’iciency must be based on en 

, ax,-,-,rsis ol: %!?e c o q l e t e  mission frcs take-off t o  landing. Complete mission -J 

studies  are 811 &solute  m c e s s i t y  t o  deterair-e t h e  performance po ten t i a l  

G? a ~ i v e n  :;i--9lane, t o  define problem areas requiring research, erd t o  

cc -.zctly evaha te  t h e  e f fec t s  of design changes. 

chz;.1c:.es c a x o t  be deteriiined on t h e  bas i s  of individual conponent ckaracter-  

i s t i c s  beczJse of the  corr:plex interzctions which exist  betveen <he sirfrzz:? 

eerot:r:xiics2 p - o p l s i o n  system, weight, and operat in2 requirerxent s. 

. . .. * 

The ef fec ts  of design 

- -- 
. : I  -l-G -.a s q e r s o n i c  t rensport  perfomance i s  current ly  leterrnixed by the  cse 

a? so l2 i s t i cazed  nachi3.e coqmter program. 

s t e ~ k z r d  ?;::youghcut inzustry. 

Such program are more o r  less 

Using spec i f ic  airplane and engine character-  

, . .  -u,,.-cs - .,-- t he  programs are  designed t o  s e l ec t  f l i g h t  paths which s a t i s f y  

greselected ace-leration ar?d cruise  sonic boo2 l i m i t s ,  t o  s a t i s f y  engine 

c;:?-k-;ional l i L : i t s ,  to se lec t  t he  cruise alt ikude which vi11 r e s u l t  i n  m a i m m  

.- -L:--:z, .~ 

suff’icien’; f l e x i b i l i t y  t o  enz’ale the mission t o  be studied i n  de t a i l .  

t o  l i m i t  normal acceleration, e tc .  The program usec Sy NASA have 
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Conpai*ed t o  the su'oso??ic t r acspor t  the major new fac to r  i n  tkt: 6ST 
- .  
c.E::-L~ process i s  the i-ec_uirerr;ent t o  hold the  sonic boo3 overpressures below 

-,DecL;'" 

bosm levels specif lea  &re of  c r i t i c a l  LQportance because o f  the powerful 

eff'ects on z.ircraft s i z e .  

con2i;urations as 2 function of t h e  c?esign m x i m u m  overpressure for transonic 

accelzratioc.  Ezch curve represents 8 f & l y  of airplanes,  each of sLn.ich 

i l ed  k v e l s  2 ~ i ~ i ~  transonic xce le rz t ion  and supersonic cruise.  The 

Figure 6 shows The gross weight for several 

L., - m e  'seen csirefully matched and optiinized f o r  minimm gross weight ZL i t s  

pnr;r-;icuLar overpressure l i m i t .  

reCkce5 tke aircraft i s  requires  t o  accelerzte a t  progressively h i g k r  

al-litudes, 7:hich requires greater  fue l  consmption, a la rger  wirig> azd 11;rger 

As the  mw;imm allowable overpressurz i s  

lnes - a i l  of which increase the e i r c rz f t  gross weight t o  c c c m p l i s h  the  

I J - o ~ .  -2 G.C> case below soze l i c i t i n g  value of overpressure, t h e  growth - 

f x t o _ -  prc;ce.;s takes GVZ and grcsc w i g h t  increases precipit iously.  

U A + L  ~- cesirc '- le UJ desi.-r 61 point i s  near t h e  knee of t he  curve. 

Obviously 

+ 7 ? .  - 

r-. ---= . - c j j ec t ive  of  research i n  the area of corf igurst ion e f f ec t s  i s  t o  

s h i f t  the k x e  of the curve doimward m d  t o  the  l e f t .  

n rac- l ica l ly  :3y i;;creasii?g the  a i r c r&f t  f l i g h t  eff ic iency i n  a l l  par t s  of t he  

Eli 2 s i 

l-." cbe:-,;. \ 

s-"-;L>z j , . 7 \ ) : - ~ - z a s  7 . -  t h  s c 2 l e  configuretion h ~ s  Seen ;"ur",er oFtinisz,5 frori 

This i s  accornplished 

'2;: i q r o v i r g  t h e  sonic 'GJOX f o r m  f ac to r  (as w i l l  be discussed 

C~:=ves A. and B are conI'igurations s tudies  i n  t k e  S C N  f e a s i b i l i t y  

- .  

, .  LL?G zt-T-'.r.,-.< "' 
- u2.,---b of EerocyczzIc efficiency and sonic boom form fector cti1iziL-i  4 

.L>- L--, ::ei;ly avz.lla'3le teckiicpes.  Taus> sonic boom i s  c r i t i c a l l y  importznt 

'3 i n  t h i s  f igure  t o  rule out one configuration i n  I'zvor of 

snothel-, ;Lel:r::L.ing 011 <:le se t t i ng  of t>e zmimm allo\,rzble boom o v e - p - e s s u z .  
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~~~~~~~ of ikz *L20rtance, sonic boom resecrch, 50th t heo re t i ca l  a d  

c.:prixatal ,  ix; I -  ==,n 3 vigorously pursued over the 1ss-t re-:: yezrs.  4-z 

-7 _. 
1-"5- ", for li2hte-c a i r c r a f t  tke  calculztive as vel1 as tiie expzrine:ltal 

scL::-55 dez l t  only v i t h  ttvolume" effects of t h e  configuration. 

InC-re - i . > L >  - - 3 - :-,- . s i r e  alid TreiL;hnt f o r  the supersonic transport ,  hovever, have 

necccs:ta'ced consideration of " l i f t  eTfects" i n  the  case of  the  SS?. 

X'ajor 

II 
F;-,, previousiy * - - - -  -lcn-iiioned dreg &us t o  i i T t  p r o g r m  have played ~7 inpor'imt 

ro l e  i n  t he  z ia lysis  of such l i f t  effects  by providing a rapid .malyLlcal 

ZZES Tor c.~;ziizinz the required iift Ciistributions. 

L.v-i-.Ac~ n . , - . ~ A ~  p a t s  of -;he Wave d r q  p r o u r m  t o  obtain a new progrm which 

c : - k - ~ k % e s  :Le sonic boox shape fac tor  as a function of lilt coeTTicient. 

- .  This program has been 

_ r  .-... - - J T,4. - -  
c, 

, 3 2 2 L ~  y o j r z x s  are i~,ow being u t i l i zed  throughout industry. 
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evslcijne2t of the znalytic c?et2ods ':.T~s accoqanieci by a pti,ellel 

expc?rLTei;tal research prograa requiring specie1 techniques. I n  order t o  

aciiieve i n  t h e  srind tunnel t'ne required "far-f ie ld"  conditions ( t h s t  13 ,  

-,+ ..-L.:: I -_ 

. I .  

L ~:~asu re i i~ec t  of the  sonic-boon signatu-? being taken many moZel 

- r - L ~ x   fro^ <?e m d e l  i t ' se l f ) ,  the :xLels ked t o  be qui te  sxall, ecs The 

- . - I I  .,A c: 

por-cfs:? cf f i L p r e  7 provi6es an iclea of the s i z e  of the models used. 

e-senzing ap_>zcatus very sensicive. T'ne i l l u s t r a t i o n  i n  t he  to? 

- .  -4 cor:-..--;1Gn of ::xilybical, f l i gh t ,  and vlnd-tunnel r e su l t s  also shmn 

L- ~ -- 2iEdi-e 7 kCi:,..,-;?s t h a t  t h e  methods used a-e  r e l i ab le  a ~ $  aclequate f o r  

j e<-< r,n conic boom overpressure levels. It should be noted t h a t  the 

~ - ~ h c n t a l  ? l ight  t e s t  r e su l t s  a re  mean v a h e s  as discussed i n  a iate-c 

. : c C X i G 3  Gf 

t heo re t i ca l  r e su l t s  allor%r f o r  tke  variations i n  aircraI't  gross weight end 

s pa2er. The p e d i c t i o n  bmds f o r  t he  win5 turznel zid 



Early r:.ir:cion s tudies  by iLGA and others (ref. 3 and 4) indiccted c r i t i c 2 1  

o1= c given fli2:I:C the ensines sperate oyer grez t ly  varying ccnditions, a wide 

- c r y - -  - d . ~ - L  0:' des iz :~  pz l - ae t e r s  must be considered, and t h e  engine select ion nust  
7 7  3% rCEL.2 on :ne sssis of  overall xission pe r fonmce .  

Lhis -ky:2e i s  ciiscussed i n  the a r t i c l e  'oy IJI. Dugan i n  t h i s  issue. 

A recent analysis of 

- 
;<is resiJl ts  
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The achievement of a la rger  r a t i o  of Cn t o  C2 P P has been one goal of 
I .  . wind-tunnel tests at  both subsonic and supersonic speeds. 

v e r t i c a l - t a i l  posi t ion and fuselage forebody cross section on the  var ia t ion  

of C 

t a i l  with two t a i l s  having the  same t o t a l  t a i l  valume and located well outboard 

on the  wing resul ted i n  improvement in  Cn Although 

not shown, C2' was reduced somewhat as a r e su l t  of the reduced height of t he  

twin t a i l s .  

i n  reference 7. 

The e f f ec t  of 

w i t h  angle of at tack is  shown i n  figure 9. Replacing the center  v e r t i c a l  I 

a t  high angles of attack. 
P 

P 
Similar e f f ec t s  at  supersonic speeds have been shown previously . 

Regarding fuselage forebody ef fec ts ,  it has been found t h a t  

s l i g h t  deviation from c i r cu la r  cross section can result i n  considerable 

improvements i n  Cn 

cross-flow charac te r i s t ics  are knownto be sens i t ive  t o  Reynolds number, 

-_. .. 
a t  moderate and high angles of attack. Inasmuch as fuselage 

.P 

research i s  current ly  underwey t o  determine i f  these differences are maintained 

t o  Reynolds numbers beyond the maximum tes t  value of 6 x 10 6 (based on fuselage 

depth). 

Inasmuch as the  general  c lass  of la te ra l -d i rec t iona l  handling qua l i t i e s  

problems discussed herein a re  most apparent at  high angles of attack, they are  

of importance t o  the supersonic transport  a i r c r a f t  i n  t he  landing approach 

phase of the transport  mission. hctensive ana ly t ica l  and simulator s tudies  

of landing approach handling qua l i t i es  lead t o  a ten ta t ive  conclusion t h a t  t he  

variable-wing-sweep configurations which 'can approach at  low angle of a t tack 

by v i r t u e  of high aspect ra t ioandlow wing sweep angle and u t i l i z i n g  e f fec t ive  

h i g h - l i f t  systems, exhibit  approach handling qua l i t i es  nearly comparable t o  

ex i s t ing  subsonic jets. "he fixed wing configurations, characterized by t h e i r  

high leading-edge  weep and low aspect r a t i o  and with t h e i r  less ef fec t ive  
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h igh - l i f t  systems, must approach at  higher angles of a t tack and require 

s t a b i l i t y  augmentation with re la t ive ly  high authori ty  t o  achieve acceptable 

handling qua l i t i es  i n  the  landing approach. 

Turning now t o  longitudinal s t a b i l i t y  the rearward s h i f t  of the  aero- 

cynamic center with Mach rimer coupled with the requirement f o r  posi t ive 

longi tudinal  s t a b i l i t y  at  subsonic speeds r e su l t s  i n  levels of t r im  drag 

which could ser iously l i m i t  the  performance. 

t h i s  penalty can be reduced by the  use of wing camber and t w i s t .  

As shown earlier (fig. 4(a)) 

However, 

f o r  configurations incorporating variable-sweep, var ia t ions i n  aerodynamic 

center r e s u l t  from changes i n  wing sweep angle as well as f romthe  character- 

i s t i c  changes associated with Mach number. 

s tudies  by NASA and substantiated by industry s tudies  haye indicated t h a t  use 

of an outboard-pivot locat ion will allow a lower minimum sweep angle while 

re ta in ing  an aerodynamic center location compatible with the  cruise  design 

point ( f ig .  lo). 

associated with the various piyot locations and the explanations of t h e i r  

aerodynamic center var ia t ions  with sweep angle i s  presented i n  reference 8. 

~ *.. 
I 

Extensive experimental and ana ly t ica l  

A ra ther  complete discussion of t h e  l i f t  d is t r ibu t ions  

A t  supersonic speeds the  combination of large sweep angles and high-panel 

aspect r a t i o s  used on yariable-sweep configurations can r e s u l t  i n  aeroelast ic  

effects  su f f i c i en t ly  large t o  provide reductions i n  s t a b i l i t y  t o  the  degree 

t h a t  t h e  supersonic condition could become the  c r i t i c a l  s t a b i l i t y  case. It must 

be  remembered, however, that a reduction i n  s t a b i l i t y  due t o  aeroelast ic  e f f e c t s  

does not  necessarily imply a reduction i n  cruise  trim drag. 

drag i s  dependent upon the  wing-body center-of-pressure location which i s  

The cruise  teim 

d ic t a t ed  by the wing warp required f o r  optimum cruise  performance and the 

f l e x i b l e  wing must be b u i l t  so t h a t  it assumes the  design shape i n  one g f l i g h t  

a t  t h e  design speed. 
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The avoidance of undesirable motions o r  excursions i n  angle of' a t tack 

(pitch-up) requires l i n e a r i t y  i n  the pitching-moment var ia t ion with angle of 

attack. 

i s  a W c t i o n  of wing-sweep angle, aspect r a t io ,  and hor izonta l - ta i l  location, 

along with other fac tors  such as fuselage size,  engine location, e tc .  The 

f ixed arrow wing (e.g., f i g .  3) which is  desirable  from a performance stand- 

Past experimental s tudies  have shown t h a t  t he  degree of Unea r i ty  

point, has an undesirable nonlinearity. Research current ly  underway, however, 

has indicated t h a t  leading-edge devices t a i lo red  t o  a specif ic  configuration 

can provide a s igni f icant  reduction i n  the  sever i ty  of the  in s t ab i l i t y .  

For variable-sweep configurations, i n  addition t o  the c l a s s i c  pitch-up 

associated with the  high-sweep condition, a second type of pitch-up occurs 

when the  outer panel i s  unswept. 

-.... 

A leading-edge yortex, shed from the highly 

swept forewing, causes the  forewing t o  carry a greater  proportion of the  t o t a l  

lift a t  high angle of a t tack and promotes earlier stall of the  outer panel 

with both e f f ec t s  contributing to an unstable tendency a t  high angle of attack. 

A considerable improvement i n  the  pitching-moment charac te r i s t ics  can be 

obtained with f a i r l y  moderate reduction i n  inboard forewing sweep &) and 

area, as shown i n  figure 11, indicating t h a t  there  m a y  be some desirable .  

compromise between performance and s t ab i l i t y .  

rea l ized  by def lect ing a leading-edge f l a p  (h) on t h e  highly swept f ixed 

port ion of t he  w i n g .  

t h a t  u t i l i z e d  a low horizontal  t a i l .  

A fu r the r  improvement can be 

The da ta  j u s t  discussed were obtained from a configuration 

As shown i n  f igure ll, r a i s ing  the 

hor izonta l  t a i l  as may be dictated by engine location considerations r e s u l t s  

i n  the  t a i l  contributing t o  high-lif t  i n s t a b i l i t y .  

moderate t a i l  heights by, incorporating negative t a i l  dihedral. 

'%nis may be avoided f o r  

Additional 

ga ins  in pitching-moment. l i n e a r i t y  are shown t o  be at ta inable  by t h e  proper 

c 
. .  - .. 
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I application of wing leading-edge devices. Further research t o  obtain . 
. more effect ive solutions i s  underway, 

Operation on the so cal led "backside" of the  th-rust required curve means 

t h a t  an increase i n  th rus t  is required t o  maintain the f l i g h t  path w i t h  

decreasing speed. Operation a t  t h e  speed w e l l  below t h a t  f o r  neut ra l  speed 

s t a b i l i t y  i s  objectionable. A small amount of speed i n s t a b i l i t y  may be 

tolerable ,  however, the f i n a l  answer t o  t h i s  question must await the r e s u l t s  

of f'urther research. For variable-sweep a i r c r a f t  speed s t a b i l i t y  i s  generally 

assured because crf the  higher l i f t  coeff ic ients  and l i f t -drag  r a t i o s  provided 

by the  higher aspect r a t i o s  and the a b i l i t y  t o  e f fec t ive ly  utiU.ze h igh- l i f t  

f l a p  systems. 
?.... * 

The severi ty  of the  speed s t a b i l i t y  problem f o r  low-aspect- 

r a t i o  f ixed wing configurations brought about by the  high induced drag, the 

inefficiency of h igh- l i f t  systems on this type of wing, and the d i f f i c u l t y  

i n  trimming out f l a p  pitching-moment coeff ic ients  i s  i l l u s t r a t e d  i n  figure 12. 

For the wing loadings shown, landing approach speeds below 170 knots can 

only be at ta ined through the use of larger wing-flap deflections which would 

require  increased trim capabi l i ty  such as m a y  be provided by a large canard 

o r  a rear tail .  For the  tai l less del ta  configuration shown i n  figure 12, 

t he  use of the extremely low+wing-loadings required t o  reduce the  speed corres- 

ponding t o  neutral  speed s t a b i l i t y  i s  generally inconsistent with the  require- 

ments of supersonic performance, and t he  designer may be forced t o  accept some 

degree of speed in s t ab i l i t y .  
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The supersonic t ransport  poses many st ructures  and materials problems 

associated w i t h  t he  long l i fe  tine and r e l a t ive ly  high temperatures t o  which 

the  s t ructure  w i l l  be subjected. 

t he  wing and fuselage sections w i l l  produce thermal s t resses  t h a t  must be 

considered i n  the  design. 

thermal s t r e s ses  on the  weight of' the a i r c r a f t  s t ructure  indicate t h a t  weight 

pena l t ies  of a f e w  percent of t he  basic s t ruc tu ra l  weight m a y  be a t t r ibu ted  

t o  t h i s  factor .  

Nonunifom temperatures that may ex i s t  i n  

Studies t h a t  haye been m a d e  on the  influence of 

Studies of d i f fe ren t  s t ruc tu ra l  concepts f o r  the supersonic t ransport  

i n  -%he Mach 2.5 and 3 range by both industry and NASA indicate  that the 

l i g h t e s t  weight s t ruc tures  can be achieved through the use of titanium alloys. 

The application of t i tanium favors skin-stringer construction f o r  both wing 

and fbselage s t ructures ,  whereas, s ta in less  s t e e l  would require more complex 

l o c a l  s t i f f en ing  (e. g., sandwich construction) t o  develop high compressiye 

and to r s iona l  strengths. 

Among the t i tanium al loys the  8~1-Uo-1v a l loy  is  the  pr inc ipa l  mater ia l  

of in te res t .  

ex i s t s .  I n  order t o  explore some of the  fabr ica t ion  problems associated with 

s t r u c t u r a l  applications of t h i s  alloy, NASA has i n i t i a t e d  a cmparat ive study 

of seyeral d i f fe ren t  methods of  fabr icat ing skin-stringer panels representative 

of wing compression cover skins. Some of t he  preliminary compressive s t rength 

r e s u l t s  based on an average of three test  panels f o r  each of t he  three methods 

of construction are shown i n  figure 13. 

This a l loy  is  re la t ive ly  new and l i t t l e  fabr icat ion experience 

The highest compressive strength was 

u , . /  
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obtained from the  resis tance spot-welded panels, followed by the  r iveted 

and the fusion welded (tungsten iner t  gas, TIG) panels. 

i n  compressiye strength between the spot welded and fusion welded panels was 

The maximum difference 

approximately I2 percent. 

from 8~-NO-1v titanium a l loy  i n  the  t r i p l e x  annealed condition. 

These i n i t i a l  r e s u l t s  were obtained with panels 

Additional 

panels are being fabricated from the t i tanium a l loy  i n  t h e  double-annealed 

condition using the  previously noted fabr ica t ion  methods i n  addition t o  e lectron 

beam welding, diffusion bonding, arc spot welding, and machining f rm th ick  

plate .  To date  the  fabr ica t ion  problems encountered are typ ica l  of those 

encountered with a r e l a t i v e l y  new s t ruc tu ra l  material. 

Fatigue properties of the  materials a re  of i n t e re s t  because of the long 

l i f e  requirements of 30,000 t o  50,000 hours. Both NASA and industry s tudies  

are underway on the fatigue behavior of several  promising materials. 

studies at Langley include determination of fa t igue strength, determination of 

The 

r a t e s  of crack propagation, and Yesidual strength of sheet materials containing 

cracks. "his research is  discussed i n  Mr.  Raring's a r t i c l e  i n  t h i s  issue. 

The requirements f o r  long l i f e  have triggered many materials research 

programs t o  e s t ab l i sh  e f f ec t s  of long t h e  exposure on mater ia l  properties.  

A t  Langley investigations were s tar ted approximately three years ago t o  study 

the  s t a b i l i t y  of several  t i t a n i u m  alloy and s t a in l e s s  steel sheet materials 

after prolonged exposures a t  5509 fo r  times up t o  40,000 hours. 

explosure e f f ec t s  up t o  22,000 hours have been obtained t o  date. 

of exposure are determined fram changes i n  the mechanical properties 

Data on the  

The e f f ec t s  

a t  room temperature as  wel l  as -110% and f'rom changes i n  the  t e n s i l e  
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. spot w e l d  strength. Metallurgical changes i n  the material resu l t ing  from t he  

exposure are a l so  being studied. The data thus far indicate  t h a t  the titanium 

alloys and s t a in l e s s  steels of current i n t e re s t  exhibit no s ignif icant  change 

i n  mechanical properties. 

materials has been noted i n  the tens i le  strength of spot welds of t he  candidate 

titanium al loys and some of the  s ta in less  steels. 

deter iorat ion f o r  t he  materials is indicated i n  figure 14 i n  terms of the 

r e l a t i v e  strengths, t h a t  is, the  r a t i o  of the  strength after exposure t o  that 

The only clear  evidence of deter iorat ion in these 

The magnitude of t h i s  

before exposure, f o r  exposure times up t o  22,000 hours. 

indfzated the spread obtained $or three titanium alloys; t h e  T I - ~ A M M Q - ~ V  w a s  

l e a s t  affected by exposure, next was Ti-6Al-4V and then Ti-hAl-3Mo-lV. The 

spot weld strength f o r  t he  s ta in less  s t e e l s  ranges above and below the  data  

shown f o r  t he  titanium alloys. 

from t h e  tests t o  date. 

The shaded areas 

No general trend f o r  t h e  steels i s  aV8ilable 

The most important r e s u l t  t o  date f romthe  long time exposure studies 

has been the  slow, steady losg of tensile strength of the  titanium alloy spot 

welds. W s  result was not clearly established u n t i l  approximately 10,000 

hours of exposure had elapsed. 

t h e  trend. . 

The r e su l t s  beyond 10,000 hours substantiate 

- . .. 
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For some time it has been recognized tha t . t i t an ium al loys are susceptible 

t o  s a l t  stress corrosion a t  elevated temperatures and are re l a t ive ly  immune 

t o  a t tack at room temperature. The converse s i tua t ion  applies generally t o  

s t a in l e s s  s teels .  The magnitude of  the nat ional  e f f o r t  underway t o  explore 

a l l  aspects of the  stress-corrosion problem i s  discussed i n  M r .  Raring's 

a r t ic le .  

emphasis on t he  Ti-8A1-1Mo-lV alloy. 

Langley is studying many aspects of the problem w i t h  par t icu lar  

It i s  recognized t h a t  the  t rue  importance 

of t he  salt stress corrosion problem w i l l  not be established from laboratory 

tests alone. The actual  environment of t he  a i r c r a f t  s t ructure  i n  terms of 

salt%ncountered and retained on t h e  s t ructure  w i l l  have t o  be established. 

Experience t o  date with a i r c r a f t  t ha t  contain stressed titanium-alloy parts 

i n  engine areas has shown no dfe in i te  evidence of salt s t r e s s  corrosion. 
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The operational boundaries of Mach number and a l t i t u d e  within which t h e  

SST must operate are i l l u s t r a t e d  i n  figure 15. The limits of this corridor 

are determined by considerations of maximum l if t ,  buffeting, engine blowout, 

atmospheric turbulence, maximum temperature, f l u t t e r ,  boom overpressure, and 

airframe and engine strength. Such res t r ic t ions ,  however, a re  common t o  a l l  

supersonic a i r c ra f t .  

the SST must adhere t o  a ra ther  res t r ic ted  f l i g h t  plan. 

limits and requirements result i n  a number of problem areas. 

In addition, because of economics and mission requirements, 

These operational 

I n  o N e r  t o  define and examine these problem areas, two s tudies  were 

undertaken by the NASA i n  cooperation with the  FAA. The first of these s tudies  

conducted by NASA Fl ight  Research Center involved a number of f l i g h t s  of a 

supersonic mi l i t a ry  a i r c r a f t  (North American A5A) i n t o  and out of the I;os 

Angeles terminal area under direct ion of Air Tra f f i c  Control t o  examine the  

compatibil i ty of W e d  s q e r s o n i c  and subsonic t r a f f i c .  

extensive study (ref. 9 ) is  currently underway and involves an SST simulator 

a t  the Langley Research Center (LRC) and the a i r  t r a f f i c  control  (ATC) simulator 

A second and more 

a t  t h e  National Aviation F a c i l i t i e s  Experimental Center (NAFEC) of the  FAA 

i n  At lan t ic  City, New Jersey (see figure 16).  The SST simulator a t  LRC 

A i s  e s s e n t i a l l y  a Douglas DC-8 cockpit with current j e t  t ransport  equipment 

and with instruments modified where needed t o  conform t o  scale  or  range 

i 
< 

requirements f o r  SST performance. The SST sixmilator i s  being flown i n  the 
I 

s tud ies  by experienced a i r l i n e  crews. 

and pos i t ion  data a re  transmitted t o  NAFEC by land l ines .  

simulation consis ts  aE‘ a simulated air t r a f f i c  control center  operated by 

about 30 experienced a i r  t r a f f t c  control lers  and simulated a i r  t r a f f i c  sample. 

Simulated radio communications (voice) 

A t  NAFEC, the  ATC 
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The progrem i s  designed t o  study a r r iva l  and departure operations of the  SST 

t o  and from the  Kennedy Internat ional  Airport f o r  both oversea and domestic 

I 

operat ions. 

Because of the probable handling qua l i t i e s  problem i n  the  approach 

configuration as introduced i n  the section on S t a b i l i t y  and Control (see 

ref. 51, NASA'has undertaken t o  study the  handling qua l i t i e s  of 

Feas ib i l i t y  s tudies  performed by The several  t y p i c a l  SST configurations. 

Boeing Company, under contract  t o  NASA, have indicated use of the  Boeing 367-80 

test  airplane,  which i s  equipped w i t h  boundary-layer control  and thrust 

mod<htion, would be su i tab le  f o r  such a simulation program. 

scheduled t o  start i n  1965 at the  Langley Research Center. 

Fl ight  tests are 

Engine noise of the  current large turbojet  t ransports  i s  considered t o  

be of an objectionable level not only i n  climbout but a l so  i n  the approach 

and landing when the  a i r c r a f t  are  passing over populated areas and following 

the  normal 2.3O-3.O0 gl ide  slope. Recent studies of the  SST have shown 

t h a t  t h e  engine noise of the SST w i l l  be of a comparable level. 

technique f o r  a l lev ia t ing  the noise in  the approach would be t o  make the  

approaches at  steeper than norrnal glide slope i n  order t o  increase the  distance 

An operational 

between the noise source and the  observer. 

t o  determine the various character is t ics  of a i r c r a f t  t h a t  may l i m i t  the  

A f l i g h t  program was undertaken 

steepness of the approach. 

'11-33, and W-102 aircraf't under simulated instrument conditions (p i lo t  under 

a hood). 

Tests have thus far been completed on C-47, 

Tests using a DC-8F are t o  be m a d e  i n  the  near future. 
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The .maximum operational gl ide slope was found t o  be about 6' f o r  both 

the C-47 and T-33. For the TF-102, t he  maximum gl ide  slope was a t  l e a s t  70, 
t he  limit cf the  t e s t s .  The limiting fac tors  were found t o  be the  i n a b i l i t y  

t o  increase drag without approaching the propeller windmilling condition on the 

C-47 and the i n a b i l i t y  t o  reduce thrust  on the  T-33 without encountering 

engine flame-out o r  appreciably increasing the  engine response time f o r  w a w -  

off. 

precision than the  normal 3' slope, the p i l o t  workload w a s  increased. 

While the p i l o t s  could f ly  the  steeper approaches with only a l i t t l e  l e s s  

The introduction of the supersonic t ransport  may be expected t o  in tens i fy  

some of ' the noise problems associated with current j e t  a i r c ra f t  i n  addition t o  

introduction of new problems associated w i t h  the  sonic boom. 
-_. .. 

Noise i n  the  

community due t o  the  supersonic transport  i s  a function of the  type of power 

plant  used and the manner i n  which it is operated, as well as the  configuration 

of t he  a i r c r a f t  i n  which it i s  instal led.  The manner i n  which the  a i rpor t  

noise s i t ua t ion  i s  affected by operational procedures is shown i n  figure l7 (a )  

f o r  a current intercont inental  fan-powered, subsonic jet  and f o r  some proposed 

I supersonic transports.  110 PNdb noise-level contours are indicated f o r  both 

a i r c r a f t ,  with the  or igin representing the  start of take-off ro l l .  Because 

of t he  grea te r  thrust requirements f o r  t he  EST, the  noise leve ls  t o  the side 

of the runway are generally higher than those f o r  the  subsonic airplane. 
! 

The 

take-off distance i s  generally shorter, however, and the a l t i t u d e  over a 

given locat ion i n  the community w i l l  be generally higher f o r  the  superonic 

t ranspor t  and as a r e s u l t  community noise leve ls  may be comparable t o  o r  

less than those of t h e  current long-range a i r c ra f t .  Power cutbacks during 

i n i t i a l  clirnbout a re  used for  current a i r c r a f t  because of noise considerations, 

and should be an acceptable procedure f o r  the  supersonic t ransport  operations. 



.-  . .  
I I 

- 4 -  

The noise during landing approach involves the geometry of the engine 

i n s t a l l a t i o n  and the a i r c r a f t  charac te r i s t ics  i n  landing approach. 

subsonic airplanes it i s  generally agreed t h a t  the compressor-fan noise during 

Landing approach is  more objection&le than the exhaust noise. Figure l7(b) 

shows a comparison of estimated noise leve ls  during landing approach on a 3' 

gl ide  slope f o r  some proposed supersonic t ransport  designs and a fan-powered 

subsonic transport .  

expected f o r  i n l e t  suppression of the compressor noise. 

some compressor noise suppression will be required t o  bring the  landing noise 

lev&s below those of the current subsonic transport. 

minimize the  compressor noise consists of reduction of the noise a t  t he  source 

involving s tudies  of rotor-s ta tor  interact ion and var ia t ions i n  i n l e t  geometry, 

including choking the  in l e t .  Finally, the poss ib i l i t y  of using a steeper 

approach as a means crf increasing the dis tance between the  source and the  

observer has been discussed previously. 

For current 

n e  extent of the shading represents t he  var ia t ions 

It i s  apparent t h a t  

Current research t o  

The noise-induced structural-response problems of the supersonic t ransport  

are important from the standpoint of maintaining acceptable cabin noise leve ls  

and minimizing sonic fa;tigue. The boundary-layer noise loading w i l l  e x i s t  

f o r  near ly  the  e n t i r e  duration of  the f l i gh t .  The noise f r o m  the engines, i n  

cqntrast  t o  boundary-layer noise, i s  believed t o  be s ignif icant  f o r  only a 

short  period during each mission. 

s t ruc tu re  i n  the v i c i n i t y  and t o  the rear of the  engines. 

engine noise spectra  peak at lower frequencies and reach higher sound pressure 

levels than the flow noise spectra  (ref. 10 ). Although the acoustic loads a re  

more severe than those f o r  current a i r c ra f t ,  t he  design of s t ruc tures  t o  w i t h -  

Sonic fa t igue  w i l l  only be a problem on t h e  

The estimated 
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. stand these loads is  not a new problem since similar environments have been 

encountered i n  current operational vehicles. 

s t r u c t u r a l  response experience t o  data i s  d i r e c t l y  applicable; howewr, the  

boundary-lqyer noise problem has not been s a t i s f a c t o r i l y  defined, pa r t i cu la r ly  

fo r  long-term exposures a t  elevated temperatures. 

and associated s t ruc tu ra l  responses are current ly  being studied i n  NASA 

It i s  believed t h a t  engine noise 
I 
I 

Both the  flow noise inputs 

I research programs. 



SONIC BOOM 

The sonic boom discussed previously i n  connection with a i r c r a f t  design 
1 .  

requirements, consti tutes an operating problem of such importance tha t  it 

merits special  attention. Figure 18 i l l u s t r a t e s  some of the basic  concepts 

involved. If the  shock waves fram an aircraft In supereonic f l i g h t  could be 
, 
I made visible, they wouU look about like those shown i n  the figure. These 

shock waves are moving at  the speed of the a i r c r a f t  and axe &served along 

the  ground t rack  and several  miles t o  each s ide of the t rack as t ransient  

I pressure disturbances, i l l u s t r a t ed  by the I?-wave shape i n  the figure. This 

pressure signature has associated with it a 4 which i s  a measure of the 

in*nsity, and a h  which is  a measure of the wave length, both of which depend 
a 

upon the  a i r p l w e  geometry and i t s  operating conditions. Of course, the  sonic- 

boom signature does not a l w a y s  have th i s  N-wave shape, since atmospheric 

e f f e c t s  can cause the peaks t o  be accentuated i n  some cases and rounded off 

i n  others. 

I n i t i a l  experiments on the sonic boom, measured under carefully controlled 

conditions, were begun by NASA i n  1958 with a f l i g h t  tes t  program wherein the  

f irst  sonic-boom pressure measurements a t  ground l eve l  were obtained from 

a i r c r a f t  i n  sustained supersonic f l ight .  The NASA has performed numerous 

theo re t i ca l  and windtunnel-studies and has worked closely with the  U. S. Air 

Force and the  Federal Aviation Agency i n  carrying out flight test  programs 

(ref. U). This research e f fo r t  had the dual objective of determining the  

magnitude of overpressure produced on the ground and t o  attempt t o  es tab l i sh  

t h e  to le rab le  leve l  of sonic boom exposures as determined by community response. 
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* 

The range of exposures currently experienced during routine mi l i ta ry  

operations i s  shown i n  figure 19, where t h e  sonic-boom in t ens i ty  i s  indicated 

as a f'unction of  airplane a l t i t ude  f o r  fighter and bomber aircraf ' t  i n  steady- 

l e v e l  flight and i n  maneuvers. Also shown are the  estimated in t ens i t i e s  

for various proposed supersonic transports. It can be seen t h a t  during 

routine mi l i ta ry  maneuvers, exposures approaching 6 Ibs/sq f t  have been 

experienced i n  some communities. 

designed on the  basis of 2 lbs/sq f t  during %ransonic acceleration and 1.5 

lbs/sq f t  during cruise. This requirement is  based on very limited window 

br-age experience indicating t h a t  the  threshold of possible damage i s  some- 

what grea te r  than 2 lbs/sq ft. (See ref.12 ) 

SCm f e a s i b i l i t y  studies, reduction of design overpressure from these values 

specified w i l l  r e su l t  i n  severe range-payload penalties unless accomplished 

by bas ic  configuration improvements as previously discussed i n  the  section 

The proposed supersonic t ransports  are  

As pointed out i n  the NASA 

on Performance Aerodynamics (figure 6). 

even though the  estimated in t ens i t i e s  f o r  t he  proposed supersonic t ransports  

are w e l l  within the  range o f  current exposures, the  SST signatures w i l l  have 

It would be w e l l  t o  point out t h a t  

longer wave lengths. The importance of these longer wave lengths w i l l  have 

t o  be evaluated along with t h e  wave form ef fec ts  discussed i n  the  succeeding 

paragraphs. 

The community response aspect of the  sonic-boom problem i s  of prime 

importance and i s  the  most d i f f i c u l t  t o  evaluate becaus'e of i t s  complex 

nature. 

also are aware of sonic-boom induced vibrations i n  building components and 

furnishings. 

but  a l so  the  environment i n  which they l ive.  

For instance, people observe'not only the acoustic stimulus, but 

Their reactions are a function not only of t h e i r  own observations, 

* _- ~ .- - _ _  - - - _ _  ~- 
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Important f-ndings of dhe recent FAA-Oklahoma C,,y t e s t s  r e l a t e  ;0 

atmospheric e f fec ts  on overpressure values and wave form and t o  building 

response. S t a t i s t i c a l  resu l t s  indicate t h a t  the spread i n  peak pressure 

presumably due t o  turbulence and other atmospheric anomalies can be such tha t  

about 15 percent of the t i m e ,  pressures may exceed mean values by about 30 

percent of mean pressure and 1 percent of the time the pressures may exceed 

the  mean values by 80 percent of t he  mean pressure. 

r e su l t s  of these tests i s  thst the median values of peak pressure are 

generally lower than the calculated nominalvalues. 

pe& pressure is closely interrelated t o  the pressure signature or  wave form. 

One of the character is t ic  

The significance of the 

I n  figure 20 are  presented tracings of the measured waye forms from an 

accurately-calibrated and oriented array of matched microphones at separation 

distances of 200 feet. The wave forms are  presented i n  the proper time 

sequence and are d i r ec t ly  comparable i n  amplitude. 

t he  var ia t ions of wave forms obtained f o r  given flights f o r  which the a i r c r a f t  

These data  illustrate 

operating conditions are essent ia l ly  constant. 

var ia t ion  i n  wave shape occurred even over a distance on the ground of a f e w  

It can be seen t h a t  a wide 

hundred fee t ,  and t h a t  yariations were different  f o r  the two f l i gh t s .  The 

peak overpressures value r i s e s  and f a l l s  as a function of distance i n  much 

the  same manner as the surface level of the ocean i n  the presence of waves. 

Although not shown i n  the figure, significant differences i n  wave shape were 

measured at separation distances as small as 50 feet .  Such variations as these, 

which have also been observed on other occasions (see ref. ll), are believed 

t o  result from temperature and velocity anomalies i n  the atmosphere, par t icu lar ly  

the  lower layers. Invariably the  highest measured pressures are associated. 
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. with highly-peaked wave forms, and conversely t h e  lowest measured values are 

associated with rounded-off wave forms. It i s  s igni f icant  t o  note, however, 

that t h e  impulse flmction yar ies  over a much narrower range of values than 

does t h e  corresponding peak pressure, and can exceed the  mean value by 30 

percent f o r  about 1 percent of the  time. 

The overpressures of the magnitude encountered i n  t h e  Oklahoma City 

tests were not of suf f ic ien t  magnitude t o  cause primary s t ruc tu ra l  damage 

t o  w e l l  constructed and w e l l  maintained buildings (see ref. 13). 

damage occurred t o  any f’urnishings, appliances, or  objects i n  four  test  

ho&s during the  Oklahoma City t e s t s  (ref. 13 ). 

Also, no 

I 
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SUMMAKY RENARKS 

I n  summary, t h i s  paper has reviewed a n u h e r  of research areas i n  support 

of the  National Supersonic Transport Program and has indicated where improvements 

i n  the s t a t e  of art appear attainable. 

theore t ica l  methods f o r  calculating and minimizing wave drag, drag-due-to-lift 

and sonic boom ef fec ts  have been programmed f o r  use on high speed d i g i t a l  

computers. 

has been possible t o  devise advanced aerodynamic configurations which exhibit  

f l i g h t  eff ic iencies  considerably higher than those previously demonstrated. 

I n  the  area of performance aerodynamics 

These methods and programs provide powerf'ul too ls  with which it 

& 

I n  the propulsion area mission and engine cycle studies have demonstrated 

the  importance of careful  airframe and propulsion system integration and 

matching. 

ciency i n  such areas as increased turbine i n l e t  temperature, nozzle efficiency, 

etc.  

-.. .* 
There are  large benefi ts  t o  be gained by improved component e f f i -  

S t a b i l i t y  and control research indicates t ha t  f l i g h t  a t  supersonic speed 

at high a l t i tudes  presents problems i n  proyiding adequate damping of the  dynamic 

s tabi l i ty  modes and probably w i l l  require three axis damping augmentation. High 

values of yaw-to-roll i n e r t i a  r a t i o  character is t ic  of the  slender f'uselages 

and mass dis t r ibut ion of t he  SST lead t o  objectionable la teral-direct ional  

handling quali t ies.  

undesirable excursions i n  angle-of -attack (pitch-up) can be minimized by 

u t i l i z a t i o n  of ta i lored  wing leading-edge devices. 

sweep configurations proper location of the horizontal  t a i l  i n  combination 

with w i n g  leading devices provides a meam t o  minimize the  problem. 

For fixed highly 5;zept arrow wings, the  poss ib i l i ty  of 

Likewise f o r  variable 
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I With regard t o  s t ructures  and materials it has been determined t h a t  

design t o  accommodate thermal s t resses  w i l l  incur penal t ies  of a f e w  percent 

i n  s t ruc tu ra l  weight. 

l i g h t e s t  s t ructures  can be obtained with skin-stringer construction u t i l i z i n g  

t i tanium alloys. 

. 
Research on s t ruc tura l  concepts indicates  that the  

, 

Ung time exposure a t  temperature of 550% of t i tanium 

al loys and s t a in l e s s  s t e e l s  exhibi t  no s ign i f icant  damage i n  mechanical 

properties.  However, these tests have indicated some deter iorat ion i n  the  

. t e n s i l e  s t rength of spot welds. 

Operating problem research is  underway t o  determine the  compatibillty 

of t h e  L.. SST with ex is t ing  Air Traffic Control Systems. 

used both  t r a f f i c  control  penetrations by a supersonic a i r c r a f t  and SST 

ground based simulators flown by experienced a i r l i n e  crews i n  FAA controlled 

These s tudies  have 

simulated a i r  t r a f f i c  samples. Studies of t h e  engine noise during take off 

ind ica te  t h a t  the  leyels at the 3-mile point w i l l  be comparable t o  or  l e s s  

than t h e  subsofiic j e t s .  For landing some compressor noise supression w i l l  be 

required on t h e  SST t o  bring the  noise leve ls  below those of the  current 

-I sulsonic j e t s .  
1 

Sonic boom research has indicated t h a t  large penal t ies  i n  a i r c r a f t  gross 
: 

weight w i l l  occur unless t h e  SSTconfigurations are special ly  designed t o  

minimize t h i s  effect. Research conducted i n  the  Oklahoma City sonic boom 

program indicates  the  oyerpressures were not of suf f ic ien t  magnitude t o  

cause pritnary structural damage t o  well constructed and w e l l  maintained 

4 
? 

buildings.  

i n  t h e  fou r  test  houses. 

Also, no damage occured t o  any furnishings, appliances, o r  objects 

; 

, 
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Figure  16. - NASA-Langley FAA-NAFEC land-line hook-up. 
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